Digital Archives for Nuclear Emulsion Data

- past experiments in cosmic-ray and accelerator physics -
- HTS runs at ~0.5m²/h read-out speed.
- In past emulsion experiments, NOT ALL phemomenon recorded in emulsion was studied, especially those did not match their physics purposes.
- It will be interesting to try to understand everything recorded in those emulsions ... which is being possible by HTS.
 - RUNJOB in cosmic-ray experiment (our primary target)
 - DONUT in neutrino experiment
 - NA34-emulsion, EMU09 in high energy heavy ion experiment ...
- A scheme to share those emulsion data → **Digital Archives**

K. Kodama, T. Kamiya: Aichi Univ. of Edication

M. Ichimura: Hirosaki Univ. M. Nakamura: Nagoya Univ.

RUNJOB

RUssia-Nippon JOint Balloon-program

- 10 successful flights (1995~1997,1999)
 - Each flight was \sim 140 hours at mean altitude of \sim 10g/cm² (30 \sim 35km)
- HTS scanning done for the chamber V-A of 1997 flight.

RUNJOB chamber structure (1997 flight)

■ The chamber consistes of two identical blocks and each block has 41 emulsion plates of $50 \text{cm} \times 40 \text{cm} \Rightarrow 8.2 \text{m}^2$.

Materials (iron plates, Xray films, lead plates ...) are interleaved among emulsion plates.

MicroTrack read-out by HTS

- To fullfill requirements for HTS scanning ...
 - **swelling** to expand emulsion layer thickness > 60μm
 - cut each plate (40cm×50cm) in 2 pieces (40cm×25cm)

RUNJOB emulsion plate 40cm×50cm

Microscope image of RUNJOB emulsion

Schematic view of an interaction in emulsion chamber

Emulsion tracking data actually read-out

Emulsion Chamber is de-packed to develop emulsion plates ... thus precise relative positioning among those plates are lost. First step of analysis is to re-construct those positioning.

Angle acceptance of HTS scan

BaseTrack angle distribution of RUNJOB scanning is $tan\theta \le 1.4$

"SLIP" emulsion plate moves! while in flight?

Those "SLIPs" should be taken into account properly in reconstructing tracks and vertices.

Track recognition efficiency

Track recognition efficiency ~ 0.82 for plate #5, zone=5. ... depends on plate qualty.

efficiency depends on track angle

Search for vertices/interactions in the target module

Two-track vertex $\Delta r < 5 \mu m$, $\Delta \theta > 20 mrad$ **slip-difference** r<10μm Linklet emulsion plate Δθ emulsion plate

Using all pair of **Linklets**, find small regions of $\Delta v = 20 \mu m \times 20 \mu m \times 40 \mu m (vertical),$ where two-track vertices are concentrated, in this yellow volume.

Selected vertices/interactions in the target module

Selected vertices/interactions in the target module

Selection of showers in the calorimeter module

- cascade showers tends to have many parallel tracks/electrons.
- tracks (i.e. trajectories of each electrons) will be corss connected.
- they could be selected as **ChainGroups** having large number of **basetracks**.

of BaseTracks in each ChainGroups

Selected showers in the calorimeter module

Summary

- Minimum bias re-analysis of past emulsion experiments could be possible.
 - RUNJOB (our primary tartget), JACEE, DONUT, EMU09-emulsion etc.
 - HTS would be able to read all emulsion tracks and topologies found in data can be checked in emulsion (navi).
- Half of RUNJOB 1997 flight had been fineshed HTS scanning.
 - A size of full set data is about 10Tbytes.
 - Data quality is being checked ... by analyzing vertices in the target module and showers in the calorimeter module ... problems to be understood.